Exercise 23

At noon, ship A is 100 km west of ship B. Ship A is sailing south at $35 \mathrm{~km} / \mathrm{h}$ and ship B is sailing north at $25 \mathrm{~km} / \mathrm{h}$. How fast is the distance between the ships changing at 4:00 PM?

Solution

Draw a schematic of the two ships' paths. The length of each path is obtained by multiplying a ship's speed by the time travelled.

Let the distance between the ships at any time be r.

The sides of this triangle are related by the Pythagorean theorem.

$$
r^{2}=x^{2}+y^{2}
$$

Take the derivative of both sides with respect to t and use the chain rule.

$$
\begin{aligned}
\frac{d}{d t}\left(r^{2}\right) & =\frac{d}{d t}\left(x^{2}+y^{2}\right) \\
2 r \cdot \frac{d r}{d t} & =2 x \cdot \frac{d x}{d t}+2 y \cdot \frac{d y}{d t} \\
r \frac{d r}{d t} & =x \frac{d x}{d t}+y \frac{d y}{d t}
\end{aligned}
$$

Solve for $d r / d t$.

$$
\begin{aligned}
\frac{d r}{d t} & =\frac{x \frac{d x}{d t}+y \frac{d y}{d t}}{r} \\
& =\frac{x \frac{d x}{d t}+y \frac{d y}{d t}}{\sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

Use the fact that y is the sum of the ships' distances: $y=y_{A}+y_{B}$.

$$
\begin{aligned}
\frac{d r}{d t} & =\frac{x \frac{d x}{d t}+\left(y_{A}+y_{B}\right) \frac{d}{d t}\left(y_{A}+y_{B}\right)}{\sqrt{x^{2}+\left(y_{A}+y_{B}\right)^{2}}} \\
& =\frac{x \frac{d x}{d t}+\left(y_{A}+y_{B}\right)\left(\frac{d y_{A}}{d t}+\frac{d y_{B}}{d t}\right)}{\sqrt{x^{2}+\left(y_{A}+y_{B}\right)^{2}}} \\
& =\frac{x \frac{d x}{d t}+\left(y_{A}+y_{B}\right)(35+25)}{\sqrt{x^{2}+\left(y_{A}+y_{B}\right)^{2}}} \\
& =\frac{x \frac{d x}{d t}+60\left(y_{A}+y_{B}\right)}{\sqrt{x^{2}+\left(y_{A}+y_{B}\right)^{2}}}
\end{aligned}
$$

The horizontal distance between the ships doesn't increase as time passes, so $d x / d t=0$.

$$
\begin{aligned}
\frac{d r}{d t} & =\frac{x(0)+60\left(y_{A}+y_{B}\right)}{\sqrt{x^{2}+\left(y_{A}+y_{B}\right)^{2}}} \\
& =\frac{60\left(y_{A}+y_{B}\right)}{\sqrt{x^{2}+\left(y_{A}+y_{B}\right)^{2}}}
\end{aligned}
$$

Therefore, at 4:00 PM, the rate the distance between the ships is changing is

$$
\left.\frac{d r}{d t}\right|_{t=4}=\frac{60(35 * 4+25 * 4)}{\sqrt{(100)^{2}+(35 * 4+25 * 4)^{2}}}=\frac{720}{13} \approx 55.3846 \frac{\mathrm{~km}}{\mathrm{~h}} .
$$

